
SuperFastPython.com Cheat Sheet for Python asyncio

Why asyncio?
Asyncio provides coroutine-based concurrency
suited to non-blocking socket I/O applications.

Coroutine

Import
import asyncio

Define a coroutine
async def custom_coroutine():

...

Create coroutine object
coro = custom_coroutine()

Run coroutine as entry point
asyncio.run(main())

Suspend and run coroutine from a coroutine
await custom_coroutine()

Sleep a coroutine
await asyncio.sleep(1)

Async Comprehensions and Loops

Asynchronous comprehension
res = [r async for r in async_gen()]

Await comprehension
res = [r await a in awaitables]

Asynchronous for-loop
async for item in async_gen():

print(item)

Task
A task schedules a coroutine to run independently.

Create and schedule task (high-level)
task = asyncio.create_task(coro)

Create and schedule task (low-level)
task = asyncio.ensure_future(coro)

Suspend and wait for a task to finish
await task

Get the current task
task = asyncio.current_task()

Get all running tasks
tasks = asyncio.all_tasks()

Get task result
value = task.result()

Get task unhandled exception
ex = task.exception()

Cancel a task result
was_canceled = task.cancel()

Check if the task is done (not running)
if task.done():

...

Check if the task was canceled
if task.cancelled():

...

Add done callback function
task.add_done_callback(handler)

Remove done callback function
task.remove_done_callback(handler)

Set and get task name
task.set_name(‘MyTask’)
name = task.get_name()

Tasks
Operations on an awaitable, task, or tasks.

Wait for awaitable with a timeout
try:

await asyncio.wait_for(tk,
timeout=1)
except asyncio.TimeoutError:

...

Shield a task from cancelation
shielded = asyncio.shield(task)

Run blocking function in new thread
coro = asyncio.to_thread(myfunc)

Run coroutine in asyncio event loop
fut = run_coroutine_threadsafe(coro,
loop)

Run many awaitables as a group
await asyncio.gather(c1(), c2())

Wait for all tasks in a collection
done,pen = await asyncio.wait(tasks)

Wait for all tasks with a timeout in seconds
Try:

done,pen = await
asyncio.wait(tasks, timeout=5)
except asyncio.TimeoutError:

...

Wait for the first task in a collection
done,pen = await asyncio.wait(tasks,
return_when=FIRST_COMPLETED)

Wait for the first task to fail
done,pen = await asyncio.wait(tasks,
return_when=FIRST_EXCEPTION)

Get results in task completion order
for c in
asyncio.as_completed(tasks):

result = await c

https://superfastpython.com

Non-blocking IO Subprocesses

Run command as subprocess
p = await
create_subprocess_exec(‘ls’)

Run shell command as subprocess
p = await
create_subprocess_shell(‘ls’)

Wait for subprocess to finish
await process.wait()

Read from subprocess
data = await process.communicate()

Read from subprocess
await
process.communicate(input=data)

Terminate a subprocess
process.terminate()

Non-blocking IO Streams

Open a client tcp connection
reader, writer = await
open_connection(google,com’, 80)

Start a tcp server
server = await start_server(handle,
‘127.0.0.1’, 9876)

Read from socket
data = await reader.readline()

Write to socket
writer.write(data)

Drain socket until ready
await writer.drain()

Close socket connection
writer.close()
await writer.wait_closed()

Semaphores and Events, and Conditions

Semaphore, set num positions
semaphore = asyncio.Semaphore(10)
await semaphore.acquire()
...
semaphore.release()

Semaphore, context manager
async with semaphore:

...

Create event, then set event
event = asyncio.Event()
event.set()

Check if event is set
if event.is_set():

...

Wait for event to be set (blocking)
await event.wait()

Condition variable
condition = asyncio.Condition()
await condition.acquire()
...
condition.release()

Wait on condition to be notified (blocking)
async with condition:

await condition.wait()

Wait on condition for expression (blocking)
async with condition:

await condition.wait_for(check)

Notify any single thread waiting on condition
async with condition:

condition.notify(n=1)

Notify all threads waiting on condition
async with condition:

condition.notify_all()

Async Locks

Mutex lock
lock = asyncio.Lock()
await lock.acquire()
...
lock.release()

Mutex lock, context manager
async with lock:

...

Queues
Via Queue, LifoQueue, PriorityQueue

Create queue
queue = asyncio.Queue()

Create queue with limited capacity
queue = asyncio.Queue(100)

Add item to queue (blocking, if limited)
await queue.put(item)

Retrieve item from queue (blocking)
item = await queue.get()

Check if queue is empty
if queue.empty():

...

Check if queue is full
if queue.full():

...

Get current capacity of queue
capacity = queue.qsize()

Mark unit of work complete
queue.task_done()

Wait for all units to be complete
await queue.join()

Async Generators and Iterators

Define asynchronous generator
async def async_generator():

for i in range(10):
await asyncio.sleep(1)
yield i

Define asynchronous iterator
class AsyncIterator():

def __init__(self):
self.counter = 0

def __aiter__(self):
return self

async def __anext__(self):
if self.counter >= 10:

raise StopAsyncIteration
await asyncio.sleep(1)
self.counter += 1
return self.counter

Use asynchronous iterator
async for value in AsyncIterator():

...

Async Context Managers

Define asynchronous context manager
class AsyncContextManager():

async def __aenter__(self):
await asyncio.sleep(1)

def __aexit__(self, et, exc,
tb):

await asyncio.sleep(1)

Use asynchronous context manager
async with CustomClass() as mgmr:

...

