SuperFastPython.com Cheat Sheet for Python asyncio

Why asyncio?
Asyncio provides coroutine-based concurrency

suited to non-blocking socket I/O applications.
Coroutine

Import

import asyncio

Define a coroutine
async def custom coroutine():

#

Create coroutine object
coro = custom coroutine()

Run coroutine as entry point
asyncio.run (main())

Suspend and run coroutine from a coroutine
awalt custom coroutine ()

Sleep a coroutine
await asyncio.sleep (1)

Async Comprehensions and Loops

Asynchronous comprehension
res = [r async for r in async _gen()]

Await comprehension
res = [r awailt a in awaitables]

Asynchronous for-loop
async for item in async gen():

print (item)

Task

A task schedules a coroutine to run independently.

Create and schedule task (high-level)
task = asyncio.create task(coro)

Create and schedule task (low-level)
task = asyncio.ensure future(coro)

Suspend and wait for a task to finish
await task

Get the current task
task = asyncio.current task()

Get all running tasks
tasks = asyncio.all tasks()

Get task result
value = task.result ()

Get task unhandled exception
ex = task.exception ()

Cancel a task result
was_ canceled = task.cancel ()

Check if the task is done (not running)
if task.done():

#

Check if the task was canceled
if task.cancelled() :

#

Add done callback function
task.add done callback (handler)

Remove done callback function
task.remove done callback (handler)

Set and get task name
task.set name (‘MyTask’)
name = task.get name ()

Tasks
Operations on an awaitable, task, or tasks.

Wait for awaitable with a timeout
try:
await asyncio.wait for (tk,
timeout=1)
except asyncio.TimeoutError:

#

Shield a task from cancelation
shielded = asyncio.shield(task)

Run blocking function in new thread
coro = asyncio.to thread(myfunc)

Run coroutine in asyncio event loop
fut = run coroutine threadsafe(coro,
loop)

Run many awaitables as a group
await asyncio.gather(cl (), c2())
Wait for all tasks in a collection

done,pen = await asyncio.wait (tasks)

Wait for all tasks with a timeout in seconds
Try:

done,pen = await
asyncio.wait (tasks, timeout=5)
except asyncio.TimeoutError:

#

Wait for the first task in a collection
done,pen = awailt asyncio.wait (tasks,
return when=FIRST COMPLETED)

Wait for the first task to fail
done,pen = awailt asyncio.wait (tasks,
return when=FIRST EXCEPTION)

Get results in task completion order

for ¢ in

asyncio.as completed(tasks):
result = await c

https://superfastpython.com

Non-blocking |0 Subprocesses

Run command as subprocess
p = await
create subprocess exec(‘ls’)

Run shell command as subprocess
p = await
create subprocess shell(‘'ls’)

Wait for subprocess to finish
await process.wait ()

Read from subprocess
data = await process.communicate ()

Read from subprocess
await

process.communicate (input=data)

Terminate a subprocess
process.terminate ()

Non-blocking 10 Streams

Open a client tcp connection
reader, writer = await
open_connection(google,com’, 80)

Start a tcp server
server = await start server (handle,
V127.0.0.17, 9870)

Read from socket
data = awailt reader.readline ()

Write to socket
writer.write (data)

Drain socket until ready
await writer.drain()

Close socket connection
writer.close ()
awalt writer.wait closed()

Semaphores and Events, and Conditions

Semaphore, set num positions

semaphore = asyncio.Semaphore (10)
await semaphore.acquire ()
#

semaphore.release ()

Semaphore, context manager
async with semaphore:

#

Create event, then set event
event = asyncio.Event ()
event.set ()

Check if event is set
if event.is set():

#

Wait for event to be set (blocking)

await event.wait ()

Condition variable

condition = asyncio.Condition ()
await condition.acquire ()
#

condition.release ()

Wait on condition to be notified (blocking)
async with condition:
awalt condition.wait ()

Wait on condition for expression (blocking)
async with condition:
awalt condition.wait for (check)

Notify any single thread waiting on condition
async with condition:
condition.notify (n=1)

Notify all threads waiting on condition
async with condition:
condition.notify all()

Async Locks

Mutex lock

lock = asyncio.Lock ()
await lock.acquire()
#

lock.release ()

Mutex lock, context manager
async with lock:

#

Queues
Via Queue, LifoQueue, PriorityQueue

Create queue
gqueue = asyncio.Queue ()

Create queue with limited capacity
queue = asyncio.Queue (100)

Add item to queue (blocking, if limited)

await queue.put (item)

Retrieve item from queue (blocking)
item = await queue.get ()

Check if queue is empty
if queue.empty() :
#

Check if queue is full
if queue.full():
#

Get current capacity of queue
capacity = queue.gsize()

Mark unit of work complete
queue.task done ()

Wait for all units to be complete
await queue.join ()

Async Generators and Iterators

Define asynchronous generator
async def async _generator():

for i in range (10):
await asyncio.sleep (1)
yield i

Define asynchronous iterator
class Asynclterator():

def init (self):
self.counter = 0
def aiter (self):
return self
async def anext (self):
if self.counter >= 10:
raise StopAsyncIteration
await asyncio.sleep (1)
self.counter += 1
return self.counter

Use asynchronous iterator
async for value in Asynclterator():

#

Async Context Managers

Define asynchronous context manager
class AsyncContextManager () :
async def aenter (self):
await asyncio.sleep (1)
def aexit (self, et, exc,
tb) :
await asyncio.sleep (1)

Use asynchronous context manager
async with CustomClass () as mgmr:

#

